CLICK HERE FOR THOUSANDS OF FREE BLOGGER TEMPLATES »
Lucu

.....SELAMAT DATANG DI bLoG DeDeW.....

baGuZ kaN.......

Jumat, 25 Juli 2008

Tugas Pak Moko class 2

Proses alir kerja pemancar TV (frekuensi pengantar gelombang TV (UHF/VHF); proses alir kerja pemancar TV ; jenis pemancar TV berdasarkan area cakupan pancarannya(coverage area)

Pemancar televise UHV dan VHF
A. Kualitas Penerimaan Siaran Televisi
Besarnya signal penerimaan siaran televisi disuatu tempat dipengaruhi beberapa parameter dari stasiun pemancar yang meliputi antara lain :
Daya pancar
Gain dan sistem antena pemancar
Jarak lokasi pemancar dengan lokasi penerimaan
Frequency saluran yang digunakan
Gain dan antena sistem dari pesawat penerima
Profile chart antara antena pemancar dengan antena pesawat penerima
Ketinggian lokasi pemancar terhadap lokasi penerima
Apabila dinyatakan dalam rumus, dapat kita lihat dengan jelas parameter-parameter yang berpengaruh pada penerimaan signal siaran televisi :
Pfs(db) = Po(db) + Gant Tx(db) – Apl(db) + Gant Rx(db)
Pfs(db) : Level Field Strength dalam satuan dB
Po(db) : Power Output pemancar dalam satuan dB
Gant Tx(db) : Gain antena pemancar dalam satuan dB
Apl(db) : Anttenuasi Path Loss dalam satuan dB
Gant Rx(db) : Gain antena penerima dalam satuan dB
B.Daya Pancar
Kiranya semua orang tahu bahwa besarnya daya pancar, akan mempengaruhi besarnya signal penerimaan siaran televisi disuatu tempat tertentu pada jarak tertentu dari stasiun pemancar televisi. Semakin tinggi daya pancar semakin besar level kuat medan penerimaan siaran televisi. Namun demikina besarnya penerimaan siaran televisi tidak hanya dipengaruhi oleh besarnya daya pancar.
C. Gain Antena
Besarnya Gain antena dipengaruhi oleh jumlah dan susunan antena serta frequency yang digunakan. Antena pemancar UHF tidak mungkin digunakan untuk pemancar TV VHF dan sebaliknya, karena akan menimbulkan VSWR yang tinggi. Sedangkan antena penerima VHF dapat saja untuk menerima signal UHF dan sebaliknya, namun Gain antenanya akan sangat mengecil dari yang seharusnya.
D.Path Loss (redamanRuang)
Path Loss dapat diartikan sebagai redaman propagasi, yaitu besarnya daya yang hilang dalam menempuh jarak tertentu. Besarnya redaman disamping ditentukan oleh kondisi alam seperti tidak adanya halangan antara pemancar dengan penerima dan kondisi altitude dari masing-masing lokasi maupun antara kedua lokasi, redaman sangat dipengaruhi oleh jarak antara pemancar dengan penerima dan frekwensi yang digunakan. Dengan tanpa memperhitungkan kondisi alam dan lokasi dimana pemancar dan penerima berada, besarnya Path Loss dapat dihitung dengan menggunakan rumus “Free Space Loss” sebagai berikut :
A pl(db) = +32,5(db) +(20 log D (km))(db) + (20 log F (Mhz))(db)
E.Kebutuhan Daya Pancar
Besarnya daya pancar yang diperlukan untuk menjangkau sasaran pada jarak tertentu dipengaruhi antara lain oleh besarnya frekwensi, ketinggian antena pemancar dan antena penerima serta profile antara lokasi pemancar dengan lokasi penerima, serta besarnya level kuat medan yang diharapkan dapat diterima oleh pesawat penerima. Besarnya level kuat medan penerimaan siaran televisi untuk frekwensi band tertentu, CCIR/ ITU-R memberikan rekomendasi yang dapat digunakan sebagai referensi, namun demikina di setiap negara dapat saja memiliki kebijaksanaan tersendiri tentang kualitas penerimaan siaran televisi yang dikaitkan dengan persyaratan kuat medan minimum. Sampai saat ini di Indonesia belum ada kebijaksanaan khusus mengenai persyaratan minimum kuat medan pancaran siaran televisi yang harus dipenuhi untuk suatu penerimaan siaran televisi yang dianggap baik. Sementara itu, untuk kebutuhan perencanaan pengembangan perluasan jangkauan digunakan rekomendasi CCIR/ ITU-R sebagai acuan. Dibawah ini sebagai contoh disampaikan daftar kuat medan minimum menurut rekomendasi CCIR dan daftar kuat medan minimum yang digunakan oleh negara Australia.
Untuk menganalisa perbedaan kebutuhan daya pancar antara pemancar VHF dengan UHF dapat dilakukan dengan menggunakan perhitungan propagasi gelombang pada “free space” ataupun menggunakan chart/ grafik propagasi yang disusun oleh CCIR serta dengan memegang variabel-variabel tertentu dalam kondisi yang sama. Pada kesempatan ini marilah kita lakukan perhitungan dengan menggunakan rumus propagasi gelombang pada “free space” dengan variabel-variabel yang dipegang tetap yaitu sebagai berikut :
Jarak pemancar dengan penerima = 20 Km
Antara pemancar dan penerima tidak ada halangan/ obstacle dan ketinggian antena pemancar dan penerima tidak diperhitungkan
Frekwensi VHF = 200Mhz dan UHF = 500Mhz
Pfs = Field strength untuk VHF = 75dbuV/m = -30dBm/Z = 50Ohm
Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm
Gant = Gain antena = 10dB
Po = power output pemancar
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Dengan data sebagaimana tersebut diatas, dapat dihitung kebutuhan power output VHF yang dapat menjangkau sasaran sejauh 20Km adalah sebagai berikut :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Po(db) = -32bdm – 10db + 32,5db + 20log20 + 20log200
Po(db) = -32bdm – 10db + 32,5db + 26db + 46db
Po(db) = 62,5 dbm = 2,5dbk = 1,8KW
Sedangkan untuk pemancar UHF diperlukan power output sebesar :
Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)
Po(db) = -27bdm – 10db + 32,5db + 20log20 + 20log500
Po(db) = -27bdm – 10db + 32,5db + 26db + 54db
Po(db) = 75,5 dbm = 15,5dbk = 35KW
Apabila dilakukan perhitungan dengan menggunakan grafik rumus propagasi gelombang pada “free space” dengan variable-variable yang dipegang tetap yaitu sebagai berikut :
Jarak pemancar dengan penerima = 20Km
Antara pemancar dan penerima tidak ada halangan/ obstacle
Ketinggian antena pemancar = 150meter, dan ketinggian antene penerima penerima = 10meter
Pfs = Field strength untuk VHF = 75dbuV/m = -32dBm/Z = 50Ohm
Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm
Gant = Gain antena = 10dB
Po = Power output pemancar
Dengan data sebagaimana tersebut diatas dan dengan menggunakan standard CCIR, besarnya daya pancar dapat dihitung sebagai berikut :
1. Perhitungan Daya Pancar Pemancar VHF,Dengan menggunakan grafik pada gambar 1, dapat dijelsakan bahwa dengan 1 Kw atau 0dbk ERP pada jarak 20Km dengan ketinggian antena pemancar 150 meter dapat diperoleh field strength sebesar 63dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 75dbuV/m pada jarak 20Km diperlukan ERP sebesar 12dBk dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar VHF yang diperlukan sebesar 2dBk atau 1,58KW
2. Perhitungan Daya Pancar Pemancar UHF,Dengan menggunakan grafik pada gambar 2, dapat dijelaskan bahwa dengan 1 KW atau 0dbk ERP pada jarak 20Km denagn ketinggian antena pemancar 150 meter dapat diperoleh Field Strength sebesar 61dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 19dbk, dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar UHF yang diperlukan adalah sebesar 9dbk atau 8KW Dari uraian tersebut diatas dapat disampaikan bahwa untuk mendapatkan kualitas penerimaan gambar dan suara yang baik pada jarak yang sama diperlukan daya pancar yang lebih tinggi apabila menggunakan pemancar UHF dari pada apabila menggunakan pemancar VHF.
F.Biaya Investasi
Penggunaan pemancar UHF untuk menjangkau daerah sasaran yang sama jauhnya, diperlukan biaya investasi yang jauh lebih besar daripada menggunakan pemancar VHF. Hal ini sangat wajar karena untuk menjangkau sasaran tertentu pemancar UHF memerlukan daya yang 3 s/d 5 kali lebih besar daripada daya pemancar VHF. G. Kualitas Kualitas hasil pencaran dari pemancar VHF dibandingkan dengan kualitas hasil pancaran dari pemancar UHF adalah sama asalkan keduanya memenuhi persyaratan dan spesifikasi yang telah ditentukan. Perbedaan yang mungkin terjadi tudak akan dapat dilihat oleh mata dan didengar oleh telinga, tetapi hanya dapat diketahui dengan mengunakan alat ukur. Tidak adanya perbedaan kualitas penerimaan gambar dan suara dari pemancar televisi VHF dan UHF ini barangkali dapat ditanyakan kepada yang sempat melihat siaran televisi Singapore, Malaysia, Jepang ataupun Jerman, dimana perbedaan kualitas penerimaan siaran televisi VHF dan UHF tidak dapat di indentifikasi.
PENGGUNAAN PEMANCAR VHF OLEH TVRI
Berdasarkan peraturan internasional yang berkaitan dengan pengaturan penggunaan frekwensi (Radio Regulation) untuk penyiaran televisi pada pita frekwensi VHF dan UHF. Sesuai dengan sistem pertelevisian yang dianaut oleh indonesia yaitu CCIR B dan G maka penggunaan frekwensi tersebut telah diatur sebagai berikut :
VHF band I : saluran 2 dan 3VHF band III : saluran 4 s/d 11VHF band IV : saluran 21 s/d 37VHF band V : saluran 38 s/d 70
Sejarah pertelevisian di Indonesia diawali pada tahun 1962 oleh TVRI di Jakarta dengan menggunakan pemancar televisi VHF. Pembangunan pemancar TVRI berjalan dengan cepat terutama setelah diluncurkannya satelite palapa pada tahun 1975. Pada tahun 1987, yaitu lahirnya stasiun penyiaran televisi swasta pertama di Indonesia, stasiun pemancar TVRI telah mencapai jumlah kurang lebih 200 stasiun pemancar yang keseluruhannya menggunakan frekwensi VHF, dan pemancar TV swasta pertama tersebut diberikan alokasi frekwensi pada pita UHF. Kebijaksanaan penggunaan pita frekwensi VHF untuk TVRI dan UHF untuk swasta pada saat itu dilakukan dengan beberapa pertimbangan yang menguntungkan negara sebagai berikut :
Jumlah saluran TV pada pita VHF yang jumlahnua hanya 10 saluran hampir seluruhnya telah digunakan untuk 200 stasiun pemancar terutama di pulau Jawa, maka pemancar TV swasta yang pertama dan berlokasi di Jakarata dialokasikan pada pita frekwensi UHF.
Pemancar VHF lebih ekonomis dan tidak berbeda kualitasnya dengan pemancar TV UHF sangat cocok unruk stasiun penyiaran pemerintah yang terbatas dana pembangunannya.
Kesinambungan pemeliharaan dan penggantian pemancar TVRI yang 70% adalah buatan LEN sangat didukung oleh hasil produksi LEN yang belum memproduksi pemancar UHF.
TVRI terus memperluas jangkauannya sampai ke pelosok tanah air dimana saat itu masih banyak masyarakat di daerah yang belum mampu membeli pesawat TV berwarna dan pada saat itu pesawat hitam putih hanya dapat menerima saluran VHF.


Proses Kerja Pesawat TV
Pesawat televisi akan mengubah sinyal listrik yang di terima menjadi objek gambar utuh sesuai dengan objek yang ditranmisikan. Pada televisi hitam putih (monochrome), gambar yang di produksi akan membentuk warna gambar hitam dan putih dengan bayangan abu-abu. Pada pesawat televisi berwarna, semua warna alamiah yang telah dipisah ke dalam warna dasar R (red), G(green), dan B (blue) akan dicampur kembali pada rangkaian matriks warna untuk menghasilkan sinyal luminasi.
Selain gambar, juga membawa suara ?
Selain gambar, pemancar televisi juga membawa sinyal suara yang di tranmisikan bersama sinyal gambar. Penyiaran telavisi sebenarnya menyerupai suara sistem radio tetapi mencakup gambar dan suara. Sinyal suara di pancarkan oleh modulasi frekuensi (FM) pada suatu gelombang terpisah dalam satu saluran pemancar yang sama dengan sinyal gambar. Sinyal gambar termodulasi mirip dengan sistem pemancaran radio yang telah dikenal sebelumnya. Dalam kedua kasus ini, amplitudo sebuah gelombang pembawa frekuensi radio (RF) dibuat bervariasi terhadap tegangan pemodulasi. Modulasi adalah sinyal bidang frekuensi dasar (base band).
Modulasi frekuensi (FM) digunakan pada sinyal suara untuk meminimalisasikan atau menghindari derau (noise) dan interferensi. Sinyal suara FM dalam televisi pada dasarnya sama seperti pada penyiaran radio FM tetapi ayunan frekuensi maksimumnya bukan 75 khz melainkan 25 khz.
Saluran dan Standar Pemancar Televisi
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chanel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.
1. VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.
2. VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.
3. UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.
JENIS-JENIS SISTEM TELEVISI
Sistem pemancar televisi yang kita kenal di antaranya:
1. NTSC (National Television System Committee)
2. PAL (Phases Alternating Line)
3. SECAM (Sequential Couleur a Memorie)
4. PALB
NTSC adalah sistem televisi analog yang digunakan di Amerika Serikat dan banyak negara lainnya, termasuk Amerika dan beberapa bagian Asia Timur. Namanya diambil dari National Television System(s) Committee, badan industri pembuat standar yang menciptakannya.
Sistem PAL di gunakan di Inggris ,PAL kependekan dari phase-alternating line, phase alternation by line atau untuk phase alternation line (bahasa Indonesia: garis alternasi fase), adalah sebuah encoding berwarna digunakan dalam sistem televisi broadcast, digunakan di seluruh dunia kecuali di kebanyakan Amerika, beberapa di Asia Timur (yang menggunakan NTSC), sebagian Timur Tengah dan Eropa Timur, dan Prancis (yang menggunakan SECAM, walaupun kebanyakan dari mereka telah memulai proses menggunakan PAL). PAL dikembangkan di Jerman oleh Walter Bruch, yang bekerja di Telefunken, dan pertama kali diperkenalkan pada 1967.
Catatan bahwa Thomson Prancis, di mana Henri de France mengembangkan SECAM, kemudian membeli Telefunken. Thomson juga berada di belakang merk RCA untuk produk elektronik konsumen, dan RCA menciptakan standar TV berwarna NTSC (sebelum Thomson terlibat).
Sistem SECAM digunakan di Perancis. Sementara itu, Indonesia sendiri menggunakan sistem PALB. Hal yang membedakan sistem tersebut adalah format gambar, jarak frekuensi pembawa dan pembawa suara.
Dikutip dari : http://www.cybermq.com
Televisi digital (bahasa Inggris: Digital Television, DTV) adalah jenis TV yang menggunakan modulasi digital dan sistem kompresi untuk menyebarluaskan video, audio, dan signal data ke pesawat televisi. Televisi resolusi tinggi atau high-definition television (HDTV), yaitu: standar televisi digital internasional yang disiarkan dalam format 16:9 (TV biasa 4:3) dan surround-sound 5.1 Dolby Digital. Ia memiliki resolusi yang jauh lebih tinggi dari standar lama. Penonton melihat gambar berkontur jelas, dengan warna-warna matang, dan depth-of-field yang lebih luas daripada biasanya. HDTV memiliki jumlah pixel hingga 5 kali standar analog PAL yang digunakan di Indonesia.

Televisi kabel adalah sistem penyiaran acara televisi lewat frekuensi radio melalui serat optik atau kabel coaxial dan bukan lewat udara seperti siaran televisi biasa yang harus ditangkap antena. Selain acara televisi, acara radio FM, internet, dan telephon juga dapat disampaikan lewat kabel.

Sistem ini banyak dijumpai di Amerika Utara, Eropa, Australia, Asia Timur, Amerika Selatan, dan Timur Tengah. Televisi kabel kurang berhasil di Afrika karena kepadatan penduduk yang rendah di berbagai daerah. Seperti halnya radio, frekuensi yang berbeda digunakan untuk menyebarkan banyak saluran lewat satu kabel. Sebuah kotak penerima digunakan untuk memilih satu saluran televisi. Sistem televisi kabel modern sekarang menggunakan teknologi digital untuk menyiarkan lebih banyak saluran televisi daripada sistem analog.
Televisi satelit adalah televisi yang dipancarkan dengan cara yang mirip seperti komunikasi satelit, serta bisa disamakan dengan televisi lokal dan televisi kabel. Di banyak tempat di bumi ini, layanan televisi satelit menambah sinyal lokal yang kuno, menghasilkan jangkauan saluran dan layanan yang lebih luas, termasuk untuk layanan berbayar.
Sinyal televisi satelit pertama disiarkan dari benua Eropa ke satelit Telstar di atas Amerika Utara pada tahun 1962. Satelit komunikasi geosynchronous pertama, Syncom 2 diluncurkan pada tahun 1963. Komunikasi satelit komersial pertama di dunia, disebut Intelsat_I (disebut juga Early Bird), diluncurkan ke orbit pada tanggal 6 April 1965. Satelit jaringan televisi nasional pertama, Orbita, dibuat di Uni Soviet pada tahun 1967. Satelit domestik Amerika Utara pertama yang memuat siaran televisi adalah geostasiun Anik 1 milik Kanada, yang diluncurkan pada tahun 1872.id:Satellite television.
Televisi analog mengkodekan informasi gambar dengan memvariasikan voltase dan/atau frekuensi dari sinyal. Seluruh sistem sebelum Televisi digital dapat dimasukan ke analog.
Sistem Televisi Dasar di Dunia
BAGIAN-BAGIAN TELEVISI
Rangkaian Catu Daya (Power Supply)
Rangkaian berfungsi untuk mengubah arus AC menjadi DC yang selanjutnya didistribusikan ke seluruh rangkaian. Rangkaian catu daya dibatasi oleh garis putih pada PCB dan daerah di dalam kotak merah. Daerah di dalam garis putih adalah rangkaian input yang merupakan daerah tegangan tinggi (live area). Sementara itu, daerah di dalam kotak merah adalah output catu daya yang selanjutnya mendistribusikan tegangan DC ke seluruh rangkaian TV
Rangkaian Penala (Tuner)
Rangkaian ini terdiri dari penguat frekuensi tinggi ( penguat HF ), pencampur (mixer), dan osilator lokal. Rangkaian penala berfungsi untuk menerima sinyal masuk (gelombang TV) dari antena dan mengubahnya menjadi sinyal frekuensi IF.`
Rangkaian penguat IF (Intermediate Frequency)
Rangkaian ini berfungsi sebagai penguat sinyal hingga 1.000 kali. Sinyal output yang dihasilkan penala (tuner) merupakan sinyal yang lemah dan yang sangat tergantung pada pada sinyal pemancar, posisi penerima, dan bentang bentang alam. Rangkaian ini juga berguna untuk membuang gelombang lain yang tidak dibutuhkan dan meredam interferensi pelayanan gelombang pembawa suara yang mengganggu gambar.
Rangkaian Detektor Video
Rangkaian ini berfungsi sebagai pendeteksi sinyal video komposit yang keluar dari penguat IF gambar. Selain itu, rangkaian ini berfungsi pula sebagai peredam seluruh sinyal yang mengganggu karena apabila ada sinyal lain yang masuk akan mengakibatkan buruknya kualitas gambar. Salah satu sinyal yang di redam adalah sinyal suara.
Rangkaian Penguat Video
Rangkaian ini berfungsi sebagai penguat sinyal luminan yang berasal dari deteltor video sehingga dapat menjalankan layar kaca atau CRT (catode ray tube). Didalam rangkaian penguat video terdapat pula rangkaian ABL (automatic brightness level) atau pengatur kuat cahaya otomatis yang berfungsi untuk melindungi rangkaian tegangan tinggi dari tegangan muatan lebih yang disebabkan oleh kuat cahaya pada layar kaca.
Rangkaian AGC (Automatic Gain Control)
Rangkaian AGC berfungsi untuk mengatur penguatan input secara otomatis. Rangkaian ini akan menstabilkan sendiri input sinyal televisi yang berubah-ubah sehingga output yang dihasilkan menjadi konstan.
Rangkaian Defleksi Sinkronisasi
Rangkaian ini terdiri dari empat blok, yaitu rangkaian sinkronisasi, rangkaian defleksi vertikal, rangkaian defleksi horizontal, dan rangkaian pembangkit tegangan tinggi.
Rangkaian Audio
Suara yang kita dengar adalah hasil kerja dari rangkaian ini, sinyal pembawa IF suara akan dideteksi oleh modulator frekuensi (FM). Sebelumnya, sinyal ini dipisahkan dari sinyal pembawa gambar.
Bagaimanakah Televisi Bekerja?
Gambar yang kita lihat di layar televisi adalah hasil produksi dari sebuah kamera.
Sebelum kita mengetahui prinsip kerja pesawat televisi, ada baiknya kita mengetahui sedikit tentang perjalanan objek gambar yang biasa kita lihat di layar kaca. Gambar yang kita lihat di layar televisi adalah hasil produksi dari sebuah kamera.
Objek gambar yang di tangkap lensa kamera akan dipisahkan berdasarkan tiga warna dasar, yaitu merah (R = red), hijau (B = blue). Hasil tersebut akan dipancarkan oleh pemancar televisi (transmiter). Pada sestem pemancar televisi, informasi visual yang kita lihat pada layar kaca pada awalnya di ubah dari objek gambar menjadi sinyal listrik. Sinyal listrik tersebut akan ditransmisikan oleh pemancar ke pesawat penerima (receiver) televisi.


PRINSIP KERJA TELEVISI
Pesawat televisi akan mengubah sinyal listrik yang di terima menjadi objek gambar utuh sesuai dengan objek yang ditranmisikan. Pada televisi hitam putih (monochrome), gambar yang di produksi akan membentuk warna gambar hitam dan putih dengan bayangan abu-abu. Pada pesawat televisi berwarna, semua warna alamiah yang telah dipisah ke dalam warna dasar R (red), G(green), dan B (blue) akan dicampur kembali pada rangkaian matriks warna untuk menghasilkan sinyal luminasi.
Selain gambar, juga membawa suara ?
Selain gambar, pemancar televisi juga membawa sinyal suara yang di tranmisikan bersama sinyal gambar. Penyiaran telavisi sebenarnya menyerupai suara sistem radio tetapi mencakup gambar dan suara. Sinyal suara di pancarkan oleh modulasi frekuensi (FM) pada suatu gelombang terpisah dalam satu saluran pemancar yang sama dengan sinyal gambar. Sinyal gambar termodulasi mirip dengan sistem pemancaran radio yang telah dikenal sebelumnya. Dalam kedua kasus ini, amplitudo sebuah gelombang pembawa frekuensi radio (RF) dibuat bervariasi terhadap tegangan pemodulasi.Modulasi adalah sinyal bidang frekuensi dasar (base band).
Modulasi frekuensi (FM) digunakan pada sinyal suara untuk meminimalisasikan atau menghindari derau (noise) dan interferensi. Sinyal suara FM dalam televisi pada dasarnya sama seperti pada penyiaran radio FM tetapi ayunan frekuensi maksimumnya bukan 75khz melainkan 25 khz.
Saluran dan Standar Pemancar Televisi
Kelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.
VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.
VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.
UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.
Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.
JENIS-JENIS SISTEM TELEVISI
Sistem pemancar televisi yang kita kenal di antaranya:
NTSC (National Television System Committee)
PAL (Phases Alternating Line)
SECAM (Sequential Couleur a Memorie)
PALB
NTSC (National Television System Committee) digunakan di Amerika Serikat, sistem PAL (Phases Alternating Line) di gunakan di Inggris, sistem SECAM (Sequential Couleur a Memorie) digunakan di Perancis. Sementara itu, Indonesia sendiri menggunakan sistem PALB. Hal yang membedakan sistem tersebut adalah format gambar, jarak frekuensi pembawa dan pembawa suara.
Sistem Televisi Dasar di Dunia
Sistem Televisi Dasar di Dunia
BAGIAN-BAGIAN TELEVISI
Rangkaian Catu Daya (Power Supply)
Rangkaian berfungsi untuk mengubah arus AC menjadi DC yang selanjutnya didistribusikan ke seluruh rangkaian. Rangkaian catu daya dibatasi oleh garis putih pada PCB dan daerah di dalam kotak merah. Daerah di dalam garis putih adalah rangkaian input yang merupakan daerah tegangan tinggi (live area). Sementara itu, daerah di dalam kotak merah adalah output catu daya yang selanjutnya mendistribusikan tegangan DC ke seluruh rangkaian TV.
Rangkaian Penala (tuner)
Rangkaian ini terdiri dari penguat frekuensi tinggi ( penguat HF ), pencampur (mixer), dan osilator lokal.Rangkaian penala berfungsi untuk menerima sinyal masuk (gelombang TV) dari antena dan mengubahnya menjadi sinyal frekuensi IF.
Rangkaian penguat IF (Intermediate Frequency)
Rangkaian ini berfungsi sebagai penguat sinyal hingga 1.000 kali. Sinyal output yang dihasilkan penala ( tuner) merupakan sinyal yang lemah dan yang sangat tergantung pada pada sinyal pemancar, posisi penerima, dan bentang bentang alam. Rangkaian ini juga berguna untuk membuang gelombang lain yang tidak dibutuhkan dan meredam interferensi pelayanan gelombang pembawa suara yang mengganggu gambar.
Rangkaian Detektor Video
Rangkaian ini berfungsi sebagai pendeteksi sinyal video komposit yang keluar dari penguat IF gambar. Selain itu, rangkaian ini berfungsi pula sebagai peredam seluruh sinyal yang mengganggu karena apabila ada sinyal lain yang masuk akan mengakibatkan buruknya kualitas gambar. Salah satu sinyal yang di redam adalah sinyal suara.
Rangkaian Penguat Video
Rangkaian ini berfungsi sebagai penguat sinyal luminan yang berasal dari deteltor video sehingga dapat menjalankan layar kaca atau CRT (catode ray tube). Didalam rangkaian penguat video terdapat pula rangkaian ABL(automatic brightness level) atau pengatur kuat cahaya otomatis yang berfungsi untuk melindungi rangkaian tegangan tinggi dari tegangan muatan lebih yang disebabkan oleh kuat cahaya pada layar kaca.
Rangkaian AGC (Automatic Gain Control)
Rangkaian AGC berfungsi untuk mengatur penguatan input secara otomatis. Rangkaian ini akan menstabilkan sendiri input sinyal televisi yang berubah-ubah sehingga output yang dihasilkan menjadi konstan.
Rangkaian Defleksi Sinkronisasi
Rangkaian ini terdiri dari empat blok, yaitu rangkaian sinkronisasi, rangkaian defleksi vertikal, rangkaian defleksi horizontal, dan rangkaian pembangkit tegangan tinggi.
Rangkaian Audio
Suara yang kita dengar adalah hasil kerja dari rangkaian ini, sinyal pembawa IF suara akan dideteksi oleh modulator frekuensi (FM). Sebelumnya, sinyal ini dipisahkan dari sinyal pembawa gambar.
JENIS-JENIS LAYAR TELEVIS
Tipe Layar Televisi CRT (catode ray tube)
Pada televisi jenis ini layar terlihat lebih cembung ketimbang jenis lainnya. Teknologi televisi dengan tabung CRT tergolong paling tua dan hingga saat ini terus digunakan dan dikembangkan. Walaupun telah muncul teknologi yang baru. Tabung CRT hanya berisi sebuah tabung sinar katoda (cathode-ray tube) sedang untuk perbandingannya, plasma terdiri dari satu juta tabung fluorescent berukuran sangat kecil.
Tipe Layar Televisi Plasma
Dalam prinsipnya, layar plasma tersusun atas dua lembar kaca. Di antara keduanya diisi ribuan sel, yang ratusan di antaranya berisi gas xenon dan neon. Dua jenis elektroda panjang, address electrode dan transparent display electrode, direntangkan di antara lempengan kaca tersebut. Saat layar plasma dihidupkan, elektroda-elektroda yang saling berpotongan di atas sel itu diberi muatan listrik oleh komputer layar untuk mengionisasi gas dalam sel. Ini berlangsung ribuan kali dalam sepersekian detik. Arus listrik pun melewati gas di dalam sel dan menghasilkan aliran partikel bermuatan listrik yang cepat, yang merangsang atom gas tersebut melepaskan foton ultraviolet.
Foton ultraviolet berinteraksi dengan fosfor
Kemudian, foton ultraviolet berinteraksi dengan fosfor yang akhirnya melepaskan energi di dalam bentuk sinar foton yang jelas. Setiap pixel tersusun atas tiga sel sub pixel yang terpisah, masing-masing dengan fosfor yang berbeda warna, yaitu; merah, hijau, biru yang akan bercampur menghasilkan warna pixel.
Untuk menyeragamkan kekuatan arus listrik yang mengalir melalui sel berbeda, sistem kontrolnya akan menambah atau mengurangi intensitas warna setiap sub pixel. Hal ini untuk menghasilkan ratusan kombinasi merah, hijau, dan biru yang berbeda. Dengan cara ini, sistem kontrol dapat menghasilkan warna dalam spektrum luas, sekira ada 16,77 juta warna bisa dihasilkan sebuah layar plasma. Inilah yang membuat tampilan gambar plasma sangat tajam dan jelas.
dikutipdari e-dukasi.net


Sejarah Penemuan Teknologi Pertelevisian

Pada tahun 1873 seorang operator telegram menemukan bahwa cahaya mempengaruhi resistansi elektris selenium. Ia menyadari itu bisa digunakan untuk mengubah cahaya kedalam arus listrik dengan menggunakan fotosel silenium (selenium photocell)
Kemudian piringan metal kecil berputar dengan lubang-lubang didalamnya ditemukan oleh seorang mahasiswa yang bernama Paul Nipkow di Berlin, Jerman pada tahun 1884 dan disebut sebagai cikal bakal lahirnya televisi. Sekitar tahun 1920 John Logie Baird dan Charles Francis Jenkins menggunakan piringan karya Paul Nipkow untuk menciptakan suatu sistem dalam penangkapan gambar, transmisi, serta penerimaannya. Mereka membuat seluruh sistem televisi ini berdasarkan sistem gerakan mekanik, baik dalam penyiaran maupun penerimaannya. Pada waktu itu belum ditemukan komponen listrik tabung hampa (Cathode Ray Tube)

Televisi elektronik agak tersendat perkembangannya pada tahun-tahun itu, lebih banyak disebabkan karena televisi mekanik lebih murah dan tahan banting. Bukan itu saja, tetapi juga sangat susah untuk mendapatkan dukungan finansial bagi riset TV elektronik ketika TV mekanik dianggap sudah mampu bekerja dengan sangat baiknya pada masa itu. Sampai akhirnya Vladimir Kosmo Zworykin dan Philo T. Farnsworth berhasil dengan TV elektroniknya. Dengan biaya yang murah dan hasil yang berjalan baik, orang-orang mulai melihat kemungkinan untuk

Vladimir Zworykin, yang merupakan salah satu dari beberapa pakar pada masa itu, mendapat bantuan dari David Sarnoff, Senior Vice President dari RCA (Radio Corporation of America). Sarnoff sudah banyak mencurahkan perhatian pada perkembangan TV mekanik, dan meramalkan TV elektronik akan mempunyai masa depan komersial yang lebih baik. Selain itu, Philo Farnsworth juga berhasil mendapatkan sponsor untuk mendukung idenya dan ikut berkompetisi dengan Vladimir.

TV ELEKTRONIK

Baik Farnsworth, maupun Zworykin, bekerja terpisah, dan keduanya berhasil dalam membuat kemajuan bagi TV secara komersial dengan biaya yang sangat terjangkau. Di tahun 1935, keduanya mulai memancarkan siaran dengan menggunakan sistem yang sepenuhnya elektronik. Kompetitor utama mereka adalah Baird Television, yang sudah terlebih dahulu melakukan siaran sejak 1928, dengan menggunakan sistem mekanik seluruhnya. Pada saat itu sangat sedikit orang yang mempunyai televisi, dan yang mereka punyai umumnya berkualitas seadanya. Pada masa itu ukuran layar TV hanya sekitar tiga sampai delapan inchi saja sehingga persaingan mekanik dan elektronik tidak begitu nyata, tetapi kompetisi itu ada disana.


TV RCA, Tipe TT5 1939, RCA dan Zworykin siap untuk program reguler televisinya, dan mereka mendemonstrasikan secara besar-besaran pada World Fair di New York. Antusias masyarakat yang begitu besar terhadap sistem elektronik ini, menyebabkan the National Television Standards Committee [NTSC], 1941, memutuskan sudah saatnya untuk menstandarisasikan sistem transmisi siaran televisi di Amerika. Lima bulan kemudian, seluruh stasiun televisi Amerika yang berjumlah 22 buah itu, sudah mengkonversikan sistemnya kedalam standard elektronik baru.
Pada tahun-tahun pertama, ketika sedang resesi ekonomi dunia, harga satu set televisi sangat mahal. Ketika harganya mulai turun, Amerika terlibat perang dunia ke dua. Setelah perang usai, televisi masuk dalam era emasnya. Sayangnya pada masa itu semua orang hanya dapat menyaksikannya dalam format warna hitam putih.

TV BERWARNA
Sebenarnya CBS sudah lebih dahulu membangun sistem warnanya beberapa tahun sebelum rivalnya, RCA. Tetapi sistem mereka tidak kompatibel dengan kebanyakan TV hitam putih diseluruh negara. CBS yang sudah mengeluarkan banyak sekali biaya untuk sistem warna mereka harus menyadari kenyataan bahwa pekerjaan mereka berakhir sia-sia. RCA yang belajar dari pengalaman CBS mulai membangun sistem warna menurut formatnya. Mereka dengan cepat membangun sistem warna yang mampu untuk diterima pada sistem warna dan sistem hitam putih. Setelah RCA memamerkan kemampuan sistem mereka, NTSC membakukannya untuk siaran komersial thn 1953.
Berpuluh tahun kemudian hingga awal milenium baru abad 21 ini, orang sudah biasa berbicara lewat telepon selular digital dan mengirim e-mail lewat jaringan komputer dunia, tetapi teknologi televisi pada intinya tetap sama. Tentu saja ada beberapa perkembangan seperti tata suara stereo dan warna yang lebih baik, tetapi tidak ada suatu lompatan besar yang mampu untuk menggoyang persepsi orang tentang televisi. Tetapi semuanya secara perlahan mulai berubah, televisi secara bertahap sudah memasuki era digital. dikutip dari : misteridigital.wordpress.com
.
Perkembangan
Dalam penemuan televisi (tv), terdapat banyak pihak, penemu maupun inovator yang terlibat, baik perorangan maupun badan usaha. Televisi adalah karya massal yang dikembangkan dari tahun ke tahun. Awal dari televisi tentu tidak bisa dipisahkan dari penemuan dasar, hukum gelombang elektromagnetik yang ditemukan oleh Joseph Henry dan Michael Faraday (1831) yang merupakan awal dari era komunikasi elektronik.
1876 - George Carey menciptakan selenium camera yang digambarkan dapat membuat seseorang melihat gelombang listrik. Belakangan, Eugen Goldstein menyebut tembakan gelombang sinar dalam tabung hampa itu dinamakan sebagai sinar katoda.
1884 - Paul Nipkov, Ilmuwan Jerman, berhasil mengirim gambar elektronik menggunakan kepingan logam yang disebut teleskop elektrik dengan resolusi 18 garis.
1888 - Freidrich Reinitzeer, ahli botani Austria, menemukan cairan kristal (liquid crystals), yang kelak menjadi bahan baku pembuatan LCD. Namun LCD baru dikembangkan sebagai layar 60 tahun kemudian.
1897 - Tabung Sinar Katoda CRT) (pertama diciptakan ilmuwan Jerman, Karl Ferdinand Braun. Ia membuat CRT dengan layar berpendar bila terkena sinar. Inilah yang menjadi dassar televisi layar tabung.
1900 - Istilah Televisi pertama kali dikemukakan Constatin Perskyl dari Rusia pada acara International Congress of Electricity yang pertama dalam Pameran Teknologi Dunia di Paris.
1907 - Campbell Swinton dan Boris Rosing dalam percobaan terpisah menggunakan sinar katoda untuk mengirim gambar.
1927 - Philo T Farnsworth ilmuwan asal Utah, Amerika Serikat mengembangkan televisi modern pertama saat berusia 21 tahun. Gagasannya tentang image dissector tube menjadi dasar kerja televisi.
1929 - Vladimir Zworykin dari Rusia menyempurnakan tabung katoda yang dinamakan kinescope. Temuannya mengembangkan teknologi yang dimiliki CRT.
1940 - Peter Goldmark menciptakan televisi warna dengan resolusi mencapai 343 garis.
1958 - Sebuah karya tulis ilmiah pertama tentang LCD sebagai tampilan dikemukakan Dr. Glenn Brown.
1964 - Prototipe sel tunggal display Televisi Plasma pertamakali diciptakan Donald Bitzer dan Gene Slottow. Langkah ini dilanjutkan Larry Weber.
1967 - James Fergason menemukan teknik twisted nematic, layar LCD yang lebih praktis.
1968 - Layar LCD pertama kali diperkenalkan lembaga RCA yang dipimpin George Heilmeier.
1975 - Larry Weber dari Universitas Illionis mulai merancang layar plasma berwarna.
1979 - Para Ilmuwan dari perusahaan Kodak berhasil menciptakan tampilan jenis baru organic light emitting diode (OLED). Sejak itu, mereka terus mengembangkan jenis televisi OLED. Sementara itu, Walter Spear dan Peter Le Comber membuat display warna LCD dari bahan thin film transfer yang ringan.
1981 - Stasiun televisi Jepang, NHK, mendemonstrasikan teknologi HDTV dengan resolusi mencapai 1.125 garis.
1987 - Kodak mematenkan temuan OLED sebagai peralatan display pertama kali.
1995 - Setelah puluhan tahun melakukan penelitian, akhirnya proyek layar plasma Larry Weber selesai. Ia berhasil menciptakan layar plasma yang lebih stabil dan cemerlang. Larry Weber kemudian megadakan riset dengan investasi senilai 26 juta dolar Amerika Serikat dari perusahaan Matsushita.
dekade 2000- Masing masing jenis teknologi layar semakin disempurnakan. Baik LCD, Plasma maupun CRT terus mengeluarkan produk terakhir yang lebih sempurna dari sebelumnya.
Memang benar banyak sebagian orang mengatakan kalau gambar yang dihasilkan TV LCD dan Plasma memiliki resolusi yang lebih tinggi. Tetapi kekurangannya adalah masa atau umur TV tersebut tidak dapat berumur panjang jika kita memakainya terus-menerus jika kalau dibandingkan dengan TV CRT atau yang di kenal sebagai Tivi biasa yang kebanyakkan orang pakai pada umumnya.


Gambar televisi (television picture) dikutip dari : e-dukasi.net
Pada dasarnya televisi adalah suatu sistem reproduksi gambar diam (still picture). Namun gambar-gambar itu disajikan secara cepat dan berurut (sequential) maka gambar itu seolah hidup. Jadi televisi adalah ilusi.

Standar TV Dunia dan HDTV
HDTV adalah suatu media komunikasi yang baru dan teknologinyapun
masih dalam proses penggarapan yang sangat ramai, terutama pada awal
dekade ini. Secara singkat sejarah perkembangan HDTV dimulai oleh
Jepang yang dimotori oleh pusat riset dan pengembangan NHK (TVRI/RRI
-nya Jepang) pada tahun 1968, kemudian diikuti oleh Masyarakat Eropa
sebagai pembanding dan akhirnya Amerika Serikat menjadi kompetitor
yang harus diperhitungkan.
Diperkirakan bahwa teknologi HDTV ini akan menjadi standar
televisi masa depan, sehingga seorang peneliti senior dalam bidang
sistem strategi dan manajemen Dr. Indu Singh meramalkan bahwa pasar
dunia untuk HDTV ini akan mencapai 250 billion dolar pertahun (tahun
2010). Untuk itu pada dekade tahun 1990 ini negara-negara maju telah
dan sedang berusaha agar bisa membuat teknologi tersebut sehingga
bisa menguasai pasar dunia (posisi strategis).
Karena itu maka sekarang telah bermunculan berbagai standar,
yang satu sama lainnya saling berbeda. Yang menjadi persoalan
sekarang adalah bagaimana sebaiknya bagi negara berkembang ?
Sebelumnya marilah kita simak pengertian dasar dari HDTV dan
prasarat idealnya lainnya
Apa itu HDTV?
HDTV dapat diartikan sebagai suatu sistem media komunikasi
bergambar dan atau bersuara dengan tingkat kualitas ketajaman gambar
(resolusi) yang sangat tinggi (hampir sama dengan kualitas film 35-mm)
dan kualitas suaranya juga menyerupai CD (Compact Disk). Dalam hal ini teknologi pemrosesan sinyal dijital dan displai memberikan peran yang sangat penting. Diharapkan juga bahwa nantinya bisa melayani
multi-bahasa dan multi media.
Karena HDTV merupakan sistem komunikasi, maka seperti juga
sistem komunikasi konvensional, untuk penyelenggaraannya memerlukan
beberapa komponen dasar seperti pusat produksi (studio),
pemroses/penyimpan. sistem transmisi dan pesawat penerima.
Sistem Siaran Ideal
Untuk dapat menyelenggarakan sistem siaran HDTV baik secara nasional
maupun global yang ideal, diperlukan beberapa kriteria antara lain
sebagai berikut :
- Penggunaan sinyal standar yang sama (di dunia /dalam satu negara)
- Biaya pesawat penerima yang murah /terbeli oleh khalayak
- Kompatibel dengan sistem yang sudah ada
- Bisa dihubungkan dengan media lain (multi-media)
- Dapat terjangkau secara meluas (aspek pemerataan)
Kompetisi Standar
Disamping aspek pasar yang menggiurkan, dalam sistem penyele-
nggaran HDTV yang global mempunyai dampak yang luas pada bidang
budaya, sosial politik sampai pada pertahanan. Karena itu
negara-negara maju telah berlomba agar sistem yang mereka kembangkan
itu nantinya dapat dipakai sebagai standar dunia (global).
Standar yang telah masuk dalam agenda rapat CCIR( badan inter-
nasional yang menangani standarisasi sistem penyiaran), baru dua
yaitu MUSE (Jepang) dan HD-MAC (Eropa). Sementara itu Amerika Serikat
yang diatur oleh FCC (Komisi Komunikasi) sedang ditegangkan untuk
memutuskan satu standar dari masing-masing team (konsorsium) yang
sedang berkompetisi.
Karena kepentingan masing-masing negara yang berbeda-beda
apakah CCIR bisa memutuskan pemakain standar yang tunggal ? Pengalaman
dari sistem TV konvensional yaitu adanya PAL/SECAM di Eropa & ASEAN,
NTSC di Amerika dan Jepang, rasanya sulit CCIR untuk bisa memutuskan
pemakaian tunggal sistem penyiaran HDTV ini.

Disamping itu juga ada badan standarisasi dibawah ISO yaitu
MPEG (Kompas 25 April 1993, penulis yang sama) yang menangani
standarisasi pengkodean dan pemampatan sinyal gambar bergerak.
Untuk sinyal gambar dengan ketajaman tinggi (HDTV), sampai saat ini
belum ada kesepakatan dan direncanakan diselesaikan pada tahun 1995.

Pertanyaan berikutnya lalu standar mana yang harus dipakai ?
MUSE, HD-MAC atau ADTV-nya Amerika.

Untuk menjawab pertanyaan ini dan sekaligus menyelesaikan
persoalan-persoalan idealisai sistem penyiaran diatas kiranya
diperlukan strategi dan pentahapan yang terpadu. Karena teknologi HDTV
tidak semata-mata teknologi televisi saja, maka demi keterpaduan sebaiknya
di dalam pengkajian , maupun pengembangannya dilakukan oleh beberapa
instansi dan industri yang terkait, seperti Telekomunikasi (TELKOM),
Perguruan Tinggi, Pengkajian Teknologi (BPPT,LIPI), Industri elektronika
(INTI, LEN,National, Elektrindo) , Kementrian Industri dan Perdagangan
(Indag), dsb-nya.
Sebagai contoh keterpaduan yang dilakukan di Jepang untuk
pengembangan industri televisi yang dimulai dekade 50. Dengan dimotori
oleh Pusat Riset dan Pengembangan NHK, Jepang memaksa industri-
industri dalam negeri (SONY, Matsuhita, dll) untuk bisa memproduksi
Televisi dan komponen terkait dengan orientasi mula pasar dalam negeri.

Dengan dilaksanakan siaran secara langsung melalui media televisi
upacara pernikahan kaisar (emperor) Akihito pada tahun 1959,
meledaklah industri televisi di Jepang .
Akhirnya seperti kita ketahui dengan baik bahwa Jepang telah
bisa merajai teknologi televisi dan pasar dunia. , bahkan telah
berhasil menayangkan program HDTV 8 jam sehari (mulai 25 Nopember 1991)

0 komentar: